Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Ann Indian Acad Neurol ; 26(5): 723-727, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022486

RESUMEN

Introduction: The recent evolution of genomics has led to the development of targeted therapeutics, revolutionizing medical approaches. This study aimed to assess the impact of genetic testing on the current epilepsy management paradigm with a specific focus on the variability of outcomes subsequent to genetic diagnoses. Methodology: Data were collected retrospectively from a cohort of children aged 1-18 years, diagnosed with refractory epilepsy of confirmed genetic origin. The participants received care at a quaternary care center's pediatric neurology clinic from August 2019 to June 2021. The collected information included demographic characteristics, seizure types, EEG findings, imaging abnormalities, genetic diagnoses, attempted treatments, and seizure outcomes. Results: Among the 210 children with confirmed genetic diagnoses, 74 were included in the study. The gender distribution comprised 45 males and 29 females. Within the cohort, 68/74 exhibited single gene variations, with 23 cases associated with sodium/potassium/calcium channelopathies. Precision medicine could be applied to 25/74 cases. 17/74 children (22.97%) experienced a reduction of up to 50% in seizure frequency due to precision medicine implementation. Conclusion: While our study indicates the significance of genetic insights in adapting treatment approaches for pediatric epilepsy, it is important to temper our conclusions. The retrospective nature of our study confines our ability to definitively gauge the extent of precision medicine's utility. Our findings suggest the potential of genetic information to enhance epilepsy management, but the true impact of precision medicine can only be established through prospective investigations.

2.
Am J Hum Genet ; 110(12): 2112-2119, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37963460

RESUMEN

Over two dozen spliceosome proteins are involved in human diseases, also referred to as spliceosomopathies. WW domain-binding protein 4 (WBP4) is part of the early spliceosomal complex and has not been previously associated with human pathologies in the Online Mendelian Inheritance in Man (OMIM) database. Through GeneMatcher, we identified ten individuals from eight families with a severe neurodevelopmental syndrome featuring variable manifestations. Clinical manifestations included hypotonia, global developmental delay, severe intellectual disability, brain abnormalities, musculoskeletal, and gastrointestinal abnormalities. Genetic analysis revealed five different homozygous loss-of-function variants in WBP4. Immunoblotting on fibroblasts from two affected individuals with different genetic variants demonstrated a complete loss of protein, and RNA sequencing analysis uncovered shared abnormal splicing patterns, including in genes associated with abnormalities of the nervous system, potentially underlying the phenotypes of the probands. We conclude that bi-allelic variants in WBP4 cause a developmental disorder with variable presentations, adding to the growing list of human spliceosomopathies.


Asunto(s)
Discapacidad Intelectual , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo , Humanos , Empalmosomas/genética , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Síndrome , Malformaciones del Sistema Nervioso/genética , Pérdida de Heterocigocidad , Fenotipo
3.
Clin Exp Med ; 23(8): 5399-5412, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37898571

RESUMEN

Primary immune deficiencies or inborn errors of immunity (IEI) are a heterogeneous group of disorders that predispose affected individuals to infections, allergy, autoimmunity, autoinflammation and malignancies. IEIs are increasingly being recognized in the Indian subcontinent. Two hundred and eight patients diagnosed with an IEI during February 2017 to November 2021 at a tertiary care center in South India were included in the study. The clinical features, laboratory findings including microbiologic and genetic data, and treatment and outcome details were analyzed. The diagnosis of IEI was confirmed in a total of 208 patients (198 kindreds) based on relevant immunological tests and/or genetic tests. The male-to-female ratio was 1.8:1. Of the 208 patients, 72 (34.6%) were < 1 yr, 112 (53.8%) were 1-18 years, and 24 (11.5%) were above 18 years. The most common IEI in our cohort was SCID (17.7%) followed by CGD (12.9%) and CVID (9.1%). We also had a significant proportion of patients with DOCK8 deficiency (7.2%), LAD (6.2%) and six patients (2.8%) with autoinflammatory diseases. Autoimmunity was noted in forty-six (22%) patients. Molecular testing was performed in 152 patients by exome sequencing on the NGS platform, and a genetic variant was reported in 132 cases. Twenty-nine children underwent 34 HSCT, and 135 patients remain on supportive therapy such as immunoglobulin replacement and/or antimicrobial prophylaxis. Fifty-nine (28.3%) patients died during the study period, and infections were the predominant cause of mortality. Seven families underwent prenatal testing in the subsequent pregnancy. We describe the profile of 208 patients with IEI, and to the best of our knowledge, this represents the largest data on IEI from the Indian subcontinent reported so far.


Asunto(s)
Autoinmunidad , Factores de Intercambio de Guanina Nucleótido , Niño , Embarazo , Humanos , Femenino , Masculino , Centros de Atención Terciaria , India/epidemiología
4.
medRxiv ; 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37425688

RESUMEN

Over two dozen spliceosome proteins are involved in human diseases, also referred to as spliceosomopathies. WBP4 (WW Domain Binding Protein 4) is part of the early spliceosomal complex, and was not described before in the context of human pathologies. Ascertained through GeneMatcher we identified eleven patients from eight families, with a severe neurodevelopmental syndrome with variable manifestations. Clinical manifestations included hypotonia, global developmental delay, severe intellectual disability, brain abnormalities, musculoskeletal and gastrointestinal abnormalities. Genetic analysis revealed overall five different homozygous loss-of-function variants in WBP4. Immunoblotting on fibroblasts from two affected individuals with different genetic variants demonstrated complete loss of protein, and RNA sequencing analysis uncovered shared abnormal splicing patterns, including enrichment for abnormalities of the nervous system and musculoskeletal system genes, suggesting that the overlapping differentially spliced genes are related to the common phenotypes of the probands. We conclude that biallelic variants in WBP4 cause a spliceosomopathy. Further functional studies are called for better understanding of the mechanism of pathogenicity.

7.
Eur J Med Genet ; 64(12): 104369, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34718183

RESUMEN

Genetic screening of Congenital Adrenal Hyperplasia (CAH) is known to be challenging due to the complexities in CYP21A2 genotyping and has not been the first-tier diagnostic tool in routine clinical practice. Also, with the advent of massive parallel sequencing technology, there is a need for investigating its utility in screening extended panel of genes implicated in CAH. In this study, we have established and utilized an Allele-Specific Polymerase Chain Reaction (ASPCR) based approach for screening eight common mutations in CYP21A2 gene followed by targeted Next Generation Sequencing (NGS) of CYP21A2, CYP11B1, CYP17A1, POR, and CYP19A1 genes in 72 clinically diagnosed CAH subjects from India. Through these investigations, 88.7% of the subjects with 21 hydroxylase deficiency were positive for eight CYP21A2 mutations with ASPCR. The targeted NGS assay was sensitive to pick up all the mutations identified by ASPCR. Utilizing NGS in subjects negative for ASPCR, five study subjects were homozygous positive for other CYP21A2 variants: one with a novel c.1274G>T, three with c.1451G>C and one with c.143A>G variant. One subject was compound heterozygous for c.955C>T and c.1042G>A variants identified using ASPCR and NGS. One subject suspected for a Simple Virilizing (SV) 21 hydroxylase deficiency was positive for a CYP19A1:c.1142A>T variant. CYP11B1 variants (c.1201-1G>A, c.1200+1del, c.412C>T, c.1024C>T, c.1012dup, c.623G>A) were identified in all six subjects suspected for 11 beta-hydroxylase deficiency. The overall mutation positivity was 97.2%. Our results suggest that ASPCR followed by targeted NGS is a cost-effective and comprehensive strategy for screening common CYP21A2 mutations and the CAH panel of genes in a clinical setting.


Asunto(s)
Hiperplasia Suprarrenal Congénita/diagnóstico , Hiperplasia Suprarrenal Congénita/genética , Alelos , Femenino , Pruebas Genéticas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , India , Masculino , Mutación/genética , Fenotipo , Reacción en Cadena de la Polimerasa/métodos , Esteroide 21-Hidroxilasa/genética
9.
J Neurol ; 266(8): 1919-1926, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31069529

RESUMEN

BACKGROUND: Neurological disorders are clinically heterogeneous group of disorders and are major causes of disability and death. Several of these disorders are caused due to genetic aberration. A precise and confirmatory diagnosis in the patients in a timely manner is essential for appropriate therapeutic and management strategies. Due to the complexity of the clinical presentations across various neurological disorders, arriving at an accurate diagnosis remains a challenge. METHODS: We sequenced 1012 unrelated patients from India with suspected neurological disorders, using TruSight One panel. Genetic variations were identified using the Strand NGS software and interpreted using the StrandOmics platform. RESULTS: We were able to detect mutations in 197 genes in 405 (40%) cases and 178 mutations were novel. The highest diagnostic rate was observed among patients with muscular dystrophy (64%) followed by leukodystrophy and ataxia (43%, each). In our cohort, 26% of the patients who received definitive diagnosis were primarily referred with complex neurological phenotypes with no suggestive diagnosis. In terms of mutations types, 62.8% were truncating and in addition, 13.4% were structural variants, which are also likely to cause loss of function. CONCLUSION: In our study, we observed an improved performance of multi-gene panel testing, with an overall diagnostic yield of 40%. Furthermore, we show that NGS (next-generation sequencing)-based testing is comprehensive and can detect all types of variants including structural variants. It can be considered as a single-platform genetic test for neurological disorders that can provide a swift and definitive diagnosis in a cost-effective manner.


Asunto(s)
Análisis de Datos , Predisposición Genética a la Enfermedad/genética , Pruebas Genéticas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Enfermedades del Sistema Nervioso/genética , Niño , Preescolar , Estudios de Cohortes , Femenino , Predisposición Genética a la Enfermedad/epidemiología , Humanos , India/epidemiología , Masculino , Herencia Multifactorial/genética , Mutación/genética , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/epidemiología
10.
Genet Res Int ; 2016: 9872594, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27069690

RESUMEN

Von Hippel-Lindau [VHL] disease, an autosomal dominant hereditary cancer syndrome, is well known for its complex genotype-phenotype correlations. We looked for germline mutations in the VHL gene in an affected multiplex family with Type 1 VHL disease. Real-Time quantitative PCR for deletions and Sanger sequencing of coding regions along with flanking intronic regions were performed in two affected individuals and one related individual. Direct sequencing identified a novel heterozygous single nucleotide base substitution in both the affected members tested, segregating with VHL phenotype in this family. This variant in exon 3, c.473T>A, results in substitution of leucine, a highly conserved acid, to glutamine at position 158 [p.L158Q] and has not been reported thus far as a variant associated with disease causation. Further, this variant was not observed in 50 age and ethnicity matched healthy individuals. Extensive in silico prediction analysis along with molecular dynamics simulation revealed significant deleterious nature of the substitution L158Q on pVHL. The results of this study when collated support the view that the missense variation p.L158Q in the Elongin C binding domain of pVHL may be disease causing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...